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A B S T R A C T

Marine and freshwater ecosystems are warming, acidifying, and deoxygenating as a consequence of climate
change. In parallel, the impacts of harmful algal blooms (HABs) on these ecosystems are intensifying. Many
eutrophic habitats that host recurring HABs already experience thermal extremes, low dissolved oxygen, and low
pH, making these locations potential sentinel sites for conditions that will become more common in larger-scale
systems as climate change accelerates. While studies of the effects of HABs or individual climate change stressors
on aquatic organisms have been relatively common, studies assessing their combined impacts have been rare.
Those doing so have reported strong species- and strain-specific interactions between HAB species and climate
change co-stressors yielding outcomes for aquatic organisms that could not have been predicted based on in-
vestigations of these factors individually. This review provides an ecological and physiological framework for
considering HABs as a climate change co-stressor and considers the consequences of their combined occurrence
for coastal ecosystems. This review also highlights critical gaps in our understanding of HABs as a climate change
co-stressor that must be addressed in order to develop management plans that adequately protect fisheries,
aquaculture, aquatic ecosystems, and human health. Ultimately, incorporating HAB species into experiments and
monitoring programs where the effects of multiple climate change stressors are considered will provide a more
ecologically relevant perspective of the structure and function of marine ecosystems in future, climate-altered
systems.

1. Introduction

Climate change is transforming aquatic ecosystems and, in turn,
negatively impacting their overall health (Harley et al., 2006; Doney
et al., 2012; Hoegh-Guldberg et al., 2014). Among the many symptoms
of climate change, rising temperatures, acidification, and deoxygena-
tion are perhaps the most prominent. Warming alters basal metabolic
functioning (Pörtner and Farrell, 2008; Donelson et al., 2011), species
distributions (Hochachka and Lutz, 2001; Harley et al., 2006), and the
timing (i.e. phenology) of pivotal biological events (Edwards and
Richardson, 2004; Asch, 2015). Acidification causes physiological stress
among sensitive marine species (Michaelidis et al., 2005; Pörtner, 2008;
Pörtner and Farrell, 2008) and inhibits the growth of calcifying or-
ganisms (Talmage and Gobler, 2009; Doney et al., 2012; Waldbusser
and Salisbury, 2014). Ocean deoxygenation and hypoxia can alter the
distribution, aerobic scope, and survival of aquatic organisms (Diaz and
Rosenberg, 2008; Breitburg et al., 2018). As anthropogenic forcing
persists, it is expected that these stressors will intensify, further altering

the structure and functioning of marine and freshwater ecosystems
(Harley et al., 2006; Woodward et al., 2010; Doney et al., 2012).
Beyond direct harm to aquatic organisms, climate change will

modify the distribution and intensity of multiple co-stressors within
marine and freshwater ecosystems. For example, rising temperatures
are predicted to impact the occurrence and intensity of marine diseases
(Burge et al., 2014), ocean deoxygenation (Diaz and Rosenberg, 2008;
Breitburg et al., 2018), habitat loss (Waycott et al., 2009; Hoegh-
Guldberg and Bruno, 2010; Friedland et al., 2013), and various en-
vironmental contaminants (e.g. persistent organic pollutants and pes-
ticides; Noyes et al., 2009). Additionally, eutrophic estuaries can host
seasonal hypoxia and acidification (Cai et al., 2011; Wallace et al.,
2014; Baumann et al., 2015), a phenomenon that will intensify at an
accelerated rate in the future (Sunda and Cai, 2012). Habitats con-
stricted by warming may be further limited by over-development of
coastal zones (Harley et al., 2006). Climate change stressors, therefore,
co-occur with other stressors having complex interactive effects on
aquatic species.
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Within coastal zones, harmful algal blooms (HABs) have expanded
geographically and become increasingly common (Hallegraeff, 2010;
Glibert et al., 2014; Gobler et al., 2017). While these trends are partly
related to enhanced monitoring and coastal eutrophication (Anderson
et al., 2002; Heisler et al., 2008; Anderson, 2012), there is a growing
recognition of the role of climate change in the intensification of several
HABs globally (Anderson, 2012; Glibert et al., 2014; Wells et al., 2015;
Gobler et al., 2017). Many HAB species are capable of producing potent
biotoxins that concentrate in the tissues of bivalve shellfish and, when
consumed by humans, can result in severe, even fatal, shellfish poi-
soning syndromes (Shumway, 1990; Hégaret et al., 2009). Some toxins
can also become aerosolized, causing respiratory harm to individuals
near or down-wind of blooms (Backer et al., 2003; Pierce et al., 2003;
Cheng et al., 2007). HAB-derived toxins are also a threat to marine
organisms including marine mammals, fish, sea birds, invertebrates,
and sea grasses (see review by Landsberg, 2002). Caged (i.e. aqua-
cultured) fish and shellfish are particularly vulnerable to HABs
(Shumway, 1990; Kim, 1997) exhibiting large-scale die-offs during
blooms that can have dire impacts on coastal economies (Anderson
et al., 2000; Shumway et al., 2003; Proenca and Hallegraeff, 2017). For
example, a bloom of Cochlodinium (akaMargalefidinium) polykrikoides in
South Korea resulted in the loss of an estimated $100M in aquaculture
products (Kim, 1997, 1998) and more recently, a large-scale HAB in
Chile resulted in the loss of caged fish amounting to nearly $800M
(Proenca and Hallegraeff, 2017). In the US, conservative estimates of
the costs of HABs amount to ˜ $100M annually (Hoagland and Scatasta,
2006).
Individually, climate change stressors can have significant impacts

on aquatic organisms and coastal processes (Diaz and Rosenberg, 2008;
Talmage and Gobler, 2009; Doney et al., 2012). The combined occur-
rences of two or more stressors can often have even more complex and
intense negative outcomes (Melzner et al., 2011; Byrne and
Przeslawski, 2013; Gobler et al., 2014). The presence of a co-stressor
may partly mitigate the adverse effects (i.e. antagonistic) of either
stressor, cause a predictable linear increase in effects (i.e. additive), or,
in some cases, result in consequences more severe than those predicted
from the summed effects of each stressor (i.e. synergistic). Interactive
effects are often manifested in a species-, strain-, and stressor-specific
manner and are the outcome of complex biotic and abiotic processes
(Crain et al., 2008; Melzner et al., 2011, 2011; Byrne and Przeslawski,
2013; Griffith and Gobler, 2016). While multi-factorial studies in-
corporating multiple stressors are logistically challenging to implement,
progress has been made. There is a growing body of literature addres-
sing the combined impacts of exposure to climate change-associated
stressors (e.g. temperature, acidification, hypoxia, etc.). Lacking in this
literature, however, has been a consideration of HABs as a co-stressor.
This review, therefore, is focused on the co-occurrence of HABs with
other climate change stressors and the implications of their combined
impacts on aquatic ecosystems (Fig. 1).

2. Co-occurrences and interactive effects of climate change
stressors

The projected impacts of individual climate change stressors are
well-studied (see reviews by Harley et al., 2006; Doney et al., 2012;
Breitburg et al., 2018) and their co-occurrences are relatively well-
documented. For example, many habitats subjected to hypoxia can also
be stricken by prolonged warming (Rabalais et al., 2002; Vargas-Yáñez,
2005; Pörtner, 2008; Cossellu and Nordberg, 2010) and habitats with
low levels of oxygen also host high levels of CO2 and subsequent de-
clines in pH (Cai et al., 2011; Waldbusser et al., 2011; Wallace et al.,
2014). The combined occurrence of these stressors pose complex
challenges for aquatic organisms as individual stressors can have
common physiological targets. For example, warming that reduces
oxygen availability within aquatic ecosystems also stimulates basal
metabolism and oxygen demand, further constraining the aerobic scope

of organisms in hypoxic zones (Abele et al., 2002; Pörtner, 2008, 2010).
The transport of oxygen via pH-sensitive blood pigments may become
reduced as tissues and body fluids are challenged with exogenous H+ in
acidified environments (Pörtner, 2005), a scenario that could intensify
oxygen-limitation associated with hypoxia. Given finite energy re-
sources, the combined presence of two or more stressors may limit the
ability of an organism to compensate for one or more stressors as en-
ergetic resources are depleted (Crain et al., 2008; Sokolova, 2013).
While later-life stage organisms may be more tolerant to acute and even
longer-term environmental perturbations, the onset of these conditions
(e.g. thermal stress, hypoxia, and acidification) in many coastal zones
coincides with the reproductive conditioning and/or the spawning and
hatching of early-life stage organisms (Kennedy and Krantz, 1982;
Sherman et al., 1984) that are often more sensitive to individual and
interacting stressors (Gobler and Talmage, 2013; Gobler et al., 2014).
Interactive effects between climate change stressors is an area of

growing interest and meta-analyses have revealed interactions between
warming, acidification, and hypoxia (Crain et al., 2008; Vaquer-Sunyer
and Duarte, 2008; Kroeker et al., 2013). For example, Vaquer-Sunyer
and Duarte (2011) discovered that exposure to thermal stress combined
with hypoxia accelerated time-to-death by 74% among benthic mac-
rofuana and lead to a significant increase in lethal oxygen thresholds.
Meta-analyses of multiple marine taxa have revealed a heightened
sensitivity to acidification for individuals concurrently exposed to ele-
vated temperatures (Kroeker et al., 2013) and while responses to co-
stressors are taxa-specific, combined exposure can elicit strong sy-
nergistic effects on key biological processes including calcification,
photosynthesis, reproductive output, and survival (Harvey et al., 2013).
Laboratory-based investigations also suggest significant interactive
(positive and negative) effects between climate change stressors. Hy-
poxia and acidification interact to additively and synergistically reduce
the growth and survival of early-life stage finfish and molluscs, often
producing outcomes more severe than would be predicted based upon
separate exposures to singular stressors (Kim et al., 2013a, 2013b;
Gobler et al., 2014; DePasquale et al., 2015). Interactive outcomes,
however, are not always negative. For example, Jansson et al. (2015)
observed greater growth among juvenile Macoma balthica exposed to
low oxygen at ambient pH and greater survival among individuals ex-
posed to low DO and low pH concurrently. Despite the global expansion
of HABs (Anderson, 2012; Gobler et al., 2017), few climate change
studies have included HAB species as a co-stressor (see Table 1). Given
the complex interactions between other climate change stressors, ex-
posure to HABs may further complicate dynamic interactions among
stressors (see Fig. 1).

3. The early manifestation of climate change stressors in coastal
zones

Coastal zones are host to a diverse array of aquatic life and are
among the most productive ecosystems on the planet (Valiela, 2009).
Their proximity to terrestrial nutrient sources, topographical features,
and hydrodynamically-retentive properties render coastal habitats host
to large, natural variations in environmental conditions (e.g. salinity,
temperature, mixing, nutrients, etc.). Coastal zones are predicted to be
the most impacted by climate change (Halpern et al., 2008) and many
coastal regions are warming more rapidly than the open-ocean (Belkin,
2009; Baumann and Doherty, 2013). Coastal areas are also prone to
eutrophication, a root cause of several stressors. Excessive nutrient
loading and prolonged residence times can promote many types of
HABs (Anderson et al., 2002; Glibert and Burkholder, 2006; Heisler
et al., 2008; O’Neil et al., 2012). Large amounts of organic matter as-
sociated with algal blooms can stimulate microbial respiration that
depletes dissolved oxygen and produces CO2, promoting hypoxia
(Fig. 1; Diaz and Rosenberg, 2008; Gilbert et al., 2010; Breitburg et al.,
2018) and acidification (Fig. 1; Cai et al., 2011; Waldbusser et al., 2011;
Wallace et al., 2014; Baumann et al., 2015). Light attenuation and

A.W. Griffith and C.J. Gobler Harmful Algae 91 (2020) 101590

2



heterotrophic carbon acquisition by many HABs (Sunda et al., 2006;
Burkholder et al., 2008; Gobler and Sunda, 2012) may further exacer-
bate these phenomena. Through such processes, climate change stres-
sors and HABs have already emerged in some coastal zones, making
them an early-predictor of changes likely to occur in larger systems
where HABs and climate change have yet to intensify or emerge.
Many factors increase the likelihood for low dissolved oxygen,

acidification, and HABs to co-occur in coastal zones (Fig. 1). Following
spring diatom blooms within temperate latitudes, surface waters ra-
pidly warm and stratify, isolating bottom waters from surface influxes
of dissolved oxygen and lower CO2 water, conditions that promote
concurrent hypoxia and acidification (Gobler and Baumann, 2016).
Since many HABs thrive in stratified water columns (Smayda and
Reynolds, 2003; Heisler et al., 2008), this is also a period when bloom-
favorable conditions are established. The late spring and early-summer
are also times when the stressor-sensitive, early-life stages of multiple
aquatic genera (Green et al., 2009; Talmage and Gobler, 2009, 2010;
Waldbusser et al., 2010) are present in coastal systems (Kennedy and
Krantz, 1982; Sherman et al., 1984; Helluy and Beltz, 1991). Hence,
identifying the interactive effects of combined stressors on these early-
life stage organisms is essential to elucidate potential effects on coastal
fisheries and other populations.
Beyond seasonal exposure to HABs and climate change stressors,

there are likely to be vertically-segregated, diurnal patterns of ex-
posures within coastal habitats. In many locales, hypoxia and acid-
ification display diurnal patterns with dissolved oxygen and pH being
lowest at night and in deeper environments (Fig. 1; Baumann et al.,
2015; Gobler and Baumann, 2016; Baumann and Smith, 2018). Given
many harmful dinoflagellates vertically migrate to depth at night,
benthic animals may be more likely to suffer from co-exposure to HABs,

hypoxia, and acidification at night (Fig. 1). Conversely, vertically mi-
grating HABs congregate in heated surface waters by day, making the
co-occurrences of HABs and thermal stress more likely for pelagic and
aquacultured organisms (Fig. 1). Consistent with this concept, Griffith
et al.,in press, 2019) reported that bay scallops (A. irradians) cultured in
surface waters experienced near-complete mortality during C. poly-
krikoides blooms while scallops maintained in deeper locations dis-
played near-complete survival.
Beyond coastal areas, upwelling zones may also display the future

co-symptoms of climate change stressors and HABs. Upwelled waters
are known to be rich in CO2, low in dissolved oxygen, and high in
nutrients, conditions that may directly or indirectly promote the growth
of several types of HABs (Ryan et al., 2009; Kudela et al., 2010; McCabe
et al., 2016; Pitcher et al., 2017) leading to marine animal mortalities
(McCabe et al., 2016; Ryan et al., 2017), fisheries closures (Pazos et al.,
2006), and economic loss (Anderson et al., 2000). Recently, the co-
occurrence of seasonal upwelling and regional warming stimulated a
bloom of Pseudo-nitzschia australis along the west coast of the US re-
sulting in the largest harmful algal bloom ever recorded (Trainer et al.,
2019; McCabe et al., 2016; Ryan et al., 2017). Following this particular
event, widespread marine mammal deaths including whales, dolphins,
porpoises, sea lions, and seals were attributed to domoic acid exposure
(McCabe et al., 2016; Ryan et al., 2017). Given the corrosive properties
of upwelled water, its low oxygen content, and association with many
HABs, coastal upwelling systems are a prime example of locales where
complex interactions between climate change stressors and HABs occur
and are likely to intensify in the near-future.

Fig. 1. The co-occurrence of climate change stressors and HABs in coastal ecosystems. Figure depicts how successive increases in temperature, carbon dioxide, and
nutrient loading since the 20th century independently and interactively promote HABs.
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4. Co-effects of climate change stressors and HABs on aquatic life

4.1. Interactions between HABs and warming

Warmer temperatures can benefit some HABs via accelerated
growth and an expanded realized niche (Paerl and Huisman, 2008; Fu
et al., 2012; Glibert et al., 2014; Wells et al., 2015; Gobler et al., 2017).
Recent warming has been attributed to more rapid growth and a longer
bloom season for multiple toxin-producing HABs (Gobler et al., 2017).
The relationships between temperature, growth rate, and toxin pro-
duction, however, are highly strain- and species-specific. Temperature
increases (up to 25 °C) generally promote the growth of Dinophysis spp.
and an increase in the production of diarrhetic shellfish toxins (DSTs;
Kamiyama et al., 2010). For other toxin-producing species, inverse re-
lationships between toxin production and growth rate have been de-
scribed. Specifically, while the growth of Alexandrium spp. increases
with temperature to a strain-specific optimum, toxin content is gen-
erally greater among slower-growing cells maintained at lower tem-
peratures (Ogata et al., 1987; Anderson et al., 1990; Hamasaki, 2001;
Etheridge and Roesler, 2005). Similarly, the toxin content (per cell) of
yessitoxin-producing dinoflagellates within the genera Protoceratium is
greater within slowly dividing cells (Guerrini et al., 2007; Röder et al.,
2012). For other organisms the relationship between temperature,
growth, and toxin production are poorly understood and/or highly
variable. Patterns between temperature and toxin production by
Pseudo-nitzschia spp. are unclear with reports of variable production
between temperature treatments (Lundholm et al., 1997) as well as
higher cellular quotas among slower growing cells (Zhu et al., 2017).
While several studies have investigated the impacts of warming on the
growth and toxin products/content of HABs, most studies have not
advanced to characterizing the activity of toxins and/or how orga-
nismal vulnerability is affected by temperature-induced changes. The
limited number of studies doing so have described strong interactive
effects (Table 1).
The impacts of temperature on the growth of toxic cyanobacteria

are well-established, with growth rates increasing with warming tem-
peratures (Rapala et al., 1997; Paerl and Huisman, 2008; Davis et al.,
2009; Paerl and Paul, 2012; Brutemark et al., 2015; Lürling et al., 2017;
Walls et al., 2018; Burford et al., 2019) to a thermal optimum that is
generally higher than it is for most eukaryotic phytoplankton (Paerl and
Huisman, 2008; Paerl and Paul, 2012; Brutemark et al., 2015; Lürling
et al., 2017; Walls et al., 2018). The impact of warming on toxin pro-
duction by cyanobacteria, however, is less clear with multiple studies
demonstrating that warming can stimulate toxin production by cya-
nobacteria including Microcystis aeruginosa (Davis et al., 2009; Lürling
et al., 2017), Planktothrix agardhii (Walls et al., 2018), and Dolichos-
permum spp. (formerly Anabaena spp.; Brutemark et al., 2015). More
recently, however, toxin content among M. aeruginosa cells was found
to be greater within slower-growing cells maintained at cooler tem-
peratures (e.g. 18 °C; Peng et al., 2018). Few studies have assessed the
toxicity of cyanobacteria at differing temperatures using biological as-
says. Those doing so report varying activities of toxins along a thermal
gradient. For example, earlier studies suggest that warming tempera-
tures may reduce the lethal effects of microcystins produced by M.
aeruginosa. Toxic strains of M. aeruginosa (strain UV-006) cultivated
across a range of temperatures (16–36 °C) were found to grow more
quickly at warmer temperature (e.g. 32 °C) but were less toxic (as de-
termined via mouse bio assay) compared to cultures at 20 °C (van der
Westhuizen and Eloff, 1985). Similarly, Watanabe and Oishi, (1985)
reported the LD50 of mice injected with M. aeruginosa (strain M228)
extracts from cultures maintained at higher temperature (e.g. > 30 °C)
increased relative to mice injected with extracts from cooler-tempera-
ture cultures. More recent investigations have reported enhanced toxic
effects of microcystins at warmer temperatures. For zebrafish (Danio
rerio) exposed to microcystin (MC-LR) across a range of temperatures
(12, 22, and 32 °C), mortality was greatest at the highest temperature

(Fig. 2; Zhang et al., 2011). Kim et al. (2014) conducted a series of
exposures of Moina macrocopa (freshwater daphnids) to microcystins
(MC-LR) at 20 and 25 °C and found reproductive output among mi-
crocystin-exposed individuals at warm temperatures was significantly
lowered compared to those exposed at the colder temperature. Hence,
warming may promote growth of cyanobacteria and intensification of
blooms, but the relationship between temperature and total bloom
toxicity may be non-linear and strain-specific.
Recently, Griffith and Gobler, (2016) characterized the impacts of

temperature on the growth and toxicity of the icthyotoxic dino-
flagellate, C. polykrikoides. While growth rates increased as cultivation
temperatures increased to a maximum at 24–27 °C, lethal effects de-
termined via biological assays with fish and shellfish revealed an in-
verse relationship between temperature and lethality. Specifically,
cultures maintained at 16 and 20 °C were more toxic on a per cell basis
than more-rapidly growing cultures maintained at> 24 °C (Fig. 3).
While the mechanisms of C. polykrikoides toxicity are not fully clear, the
majority of evidence indicates adverse effects are linked to the pro-
duction of reactive oxygen species (ROS; Kim, 1998; Tang and Gobler,
2009a, 2009b). Subsequent trials revealed antioxidant enzymes were
more efficient at neutralizing ROS at warm temperatures and/or that
the ROS compounds were more stable at cooler temperatures (Griffith
and Gobler, 2016). Thus, rising ocean temperatures may intensify C.
polykrikoides blooms in temperate zones (Griffith et al., 2019), but could
render C. polykrikoides less toxic on a per cell basis (Griffith and Gobler,
2016). As such, mass-mortality events associated with C. polykrikoides
blooms in tropical regions (Bauman et al., 2010; Richlen et al., 2010)
may have been, in part, the result of interactions with low dissolved
oxygen given potential reductions in lethality at warmer temperatures,

Fig. 2. LD50 (determined via mouse bio assay) of toxins extracted from M.
aeruginosa cultures at various temperatures (Zhang et al., 2011).

Fig. 3. Survival and time to death of sheepshead minnows (Cyprinodon var-
iegatus) exposed to C. polykrikoides at varying temperaure (24 and 28 °C data
series overlap; * indicates significant differences in time-to-death between 16,
20 °C and 24, 28 °C treatments; Griffith and Gobler, 2016).
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the elevated respiration rates of high-biomass blooms, and the low so-
lubility of oxygen in warm waters.
While the impacts of temperature on the growth of HABs are well-

characterized, the relationships between toxin production, toxic effects,
and changing temperatures have been poorly studied. The rates at
which organisms accumulate and/or depurate HAB-toxins at differing
temperatures have also been poorly studied, but are likely to alter the
harmful effects of HABs within aquatic food webs. Future work should
consider quantifying the kinetics of HAB-toxins and their bioactivities
across ranges of temperatures in conjunction with other stressors. Given
that relationships between toxin production, growth rate, and adverse
outcomes for aquatic life may be non-linear, identifying species-specific
interactions with climate change stressors will better predict the im-
pacts of HABs in the future as climate change continues.

4.2. Interactions between HABs and acidification

The effects of ocean acidification on the growth of many HAB spe-
cies has been well-studied with complex intra- and inter-species-specific
responses reported (Raven et al., 2019). Toxin production by several
harmful algae increases under high pCO2 conditions including sax-
itoxins produced by Alexandrium spp. (Tatters et al., 2013; Hattenrath-
Lehmann et al., 2015a, 2015b), karoloxins produced by Karlodinium
venefecum (Fu et al., 2010), and domoic acid produced by P. multiseries
(Sun et al., 2011; Tatters et al., 2012). Species-specific responses,
however, complicate general trends. For example, growth and toxin
production by A. catenella (Tatters et al., 2013; Hattenrath-Lehmann
et al., 2015a, 2015b) and A. ostenfeldii (Kremp et al., 2012) are expected
to increase under high pCO2 whereas mixed responses with regard to
growth and toxin production have been reported for A. tamarense (Van
de Waal et al., 2014; Pang et al., 2017). Strain-specific differences have
been reported for P. multiseries, with some groups reporting an increase
in growth and toxin production (Sun et al., 2011; Tatters et al., 2012) at
low pH/high pCO2 (Sun et al., 2011; Tatters et al., 2012) and others
reporting enhanced toxin production at high pH (Lundholm et al.,
2004; Trimborn et al., 2008). Culture methods varied between these
studies, however, with groups reporting enhanced toxicity at high pH
(Lundholm et al., 2004; Trimborn et al., 2008) adjusting culture pH via
the direct addition of acids and bases (Lundholm et al., 2004; Trimborn
et al., 2008) and those observing higher toxin content achieving low pH
conditions via direct injection of CO2 into cultures (Sun et al., 2011;
Tatters et al., 2012), suggesting enhanced toxin production associated
with excess carbon, an outcome consistent with Van de Waal’s stoi-
chiometric hypothesis for toxin production (Van de Waal et al., 2009,
2014). For harmful cyanobacteria, responses to acidification are phe-
notype-specific with some toxic strains losing competitive advantages
over non-toxic ones at low pH (Van de Waal et al., 2011; Yu et al.,
2015) and others becoming more competitive (Sandrini et al., 2014).
While growth and toxin production by HAB species within acidified
environments is well-studied, the toxicokinetics and impacts of HAB
toxins under these conditions are not known with few studies in-
vestigating harmful outcomes (i.e. biological responses among exposed
marine life) in low pH environments. Here, we summarize currently
known interactions between HAB species and acidification.
Studies have demonstrated that several key attributes of Heterosigma

akashiwo are altered under high pCO2 that, in turn, may have important
consequences for marine life. For example, separate studies using two
strains of H. akashiwo (CCMP 2393 and CCMP 2809) isolated from two
estuaries (Delaware Bay (USA) and Puget Sound (WA; USA), respec-
tively, demonstrated cultures experienced increased growth rates when
provided high pCO2 (˜750 ppm CO2; Fu et al., 2008; Kim et al., 2013).
Beyond growth, cells grown at low pH (high pCO2) exhibited increased
swimming speed with the movement of cells being largely downward,
potentially making cells increasingly light-limited as they migrate
deeper into the water column (Kim et al., 2013a). Such migration may
alter predator/prey dynamics (i.e. zooplankton grazing) as well as the

harmful effects of these blooms as cells may migrate away from wild
pelagic or caged/aquacultured organisms towards the benthos. Hence,
while higher pCO2 may promote the growth of H. akashiwo blooms,
altered swimming behavior may change their harmful effects.
The brown tide pelagophyte, Aureococcus anophagefferens, is well-

known for its lethal effects on bivalves along coastal areas of the
northeast US (Cosper et al., 1987; Gobler et al., 2005; Bricelj and
MacQuarrie, 2007) and China (Zhang et al., 2012; Dong et al., 2014).
Further, many eutrophied, net-heterotrophic estuaries including those
that experience brown tides already exhibit extreme levels of acid-
ification (Cai et al., 2011; Waldbusser et al., 2011; Wallace et al., 2014;
Baumann et al., 2015) and are already a threat to larval bivalves
(Talmage and Gobler, 2010). Talmage and Gobler (2012) investigated
the interactive effects of the brown tide alga and CO2 (e.g. 240, 390,
and 850 ppm pCO2; delivered via bubbling) on larval oysters (Crassos-
trea virginica) and bay scallops (Argopecten irradians). The authors found
that the combined effects of acidification and A. anophagefferens were
more intense than the individual stressors, depressing larval growth,
development, lipid content, and survival (Fig. 4; Talmage and Gobler,
2012). This phenomenon is particularly problematic for larval bivalves
as the onset of coastal acidification (Baumann et al., 2015) and the
emergence of brown tides (Gobler and Sunda, 2012) overlap with the
period when larval marine bivalves are spawned in temperate estuaries
(Kennedy and Krantz, 1982; Sherman et al., 1984; Helluy and Beltz,
1991). Given this outcome, the net effects of HABs in coastal ecosys-
tems that are already experiencing acidification may be under-
estimated.
Recently, Griffith and Gobler (2017) characterized the transge-

nerational responses of marine bivalves exposed to acidification (˜ 600
and 2400 ppm CO2; achieved via aeration with CO2) from the onset of
reproductive development (i.e. reproductive conditioning) through the
end of larval life-stages. Larvae from transgenerational treatments were
exposed to multiple additional stressors, including harmful algae. When
exposed to the ROS-producing dinoflagellate, C. polykrikoides (Tang and
Gobler, 2009a,2009b), larvae of hard clams (Mercenaria mercenaria)
and bay scallops (A. irradians) originating from adults undergoing re-
productive conditioning within acidified environments or exposed to
low pH during initial larval development (e.g 48 h) exhibited sig-
nificantly lower survival than larvae originating from parents under-
going gametogenesis under normal pCO2 conditions (Griffith and
Gobler, 2017). Given that high pCO2 environments can increase re-
spiration rates in larval shellfish (Waldbusser et al., 2015) and likely
stimulate intra-cellular production of ROS, additional, extracellular
ROS exuded by C. polykrikoides may overwhelm antioxidant defenses of
larvae, leading to increased mortality.
Marine organisms are often more susceptible to ocean acidification

when food is limited (Thomsen et al., 2013; Pansch et al., 2014; Ramajo
et al., 2016; Gobler et al., 2018). Recently, Mellado et al. (2018)

Fig. 4. Survival of bay scallop larvae (Argopecten irradians) exposed to high
pCO2 with and without the addition of Aureococcus anophagefferens.
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demonstrated the combined presence acidification (e.g. 1000 μatm
pCO2 modified via air-CO2 mixed gasses) and A. catenella limited ab-
sorption rates of algal cells by M. chilensis (Chilean mussels), more so
than by exposure to each stressor separately. In addition, significant
interactive effects between HAB exposure and acidification were found
to limit scope for growth, presumably as a consequence of decreased
feeding efficiency (Mellado et al., 2018). Given that many HAB species
are poor sources of nutrition (Shumway, 1990; Wikfors and Smolowitz,
1995; Bricelj and Lonsdale, 1997; Tango et al., 2005; Rountos et al.,
2019), the presence of HABs may intensify the impacts of ocean acid-
ification by reducing the quality of available food.

4.3. Interactions between HABs and hypoxia

Despite the awareness of ocean deoxygenation as an emergent cli-
mate change stressor (Levin and Breitburg, 2015; Breitburg et al.,
2018), the interactive effects between HABs and hypoxia are relatively
unknown. It is possible that HABs and hypoxia rarely occur simulta-
neously as HABs would be expected keep ecosystems well-oxygenated
via photosynthesis. Alternatively, many HABs can be heterotrophic,
relying on organic matter and/or prey for growth (Burkholder et al.,
2008; Flynn et al., 2018; Glibert et al., 2018) and thus contributing to
the net depletion of dissolved oxygen via respiration. This may be more
extreme for dense HABs that promote severe light attenuation and
minimize photosynthesis (Sunda et al., 2006). The dominance of re-
spiratory processes at night may draw down oxygen levels further
(Tyler et al., 2009) and given the downward vertical migration of some
HAB-forming dinoflagellates (Fraga et al., 1989; Smayda and Reynolds,
2003; Doblin et al., 2006), exposure of benthic communities to HABs
and hypoxia may commonly occur in some ecosystems (Fig. 1). The
termination of HABs may also threaten the health of the benthos
whereby dying HABs sink and contribute organic carbon to bottom
waters, accelerating rates of microbial respiration, deoxygenation, and
the release of intra-cellular HAB toxins.
There are seasonal and latitudinal gradients that influence the co-

occurrence of HABs and hypoxia, which are likely to strengthen as
climate change accelerates. Since the saturation of dissolved oxygen in
water is inversely proportional to temperature, temperate HABs oc-
curring in summer and tropical HABs are more likely to co-occur with
hypoxia than HABs in cooler environments. As climate change accel-
erates, an earlier onset and later termination of hypoxic conditions
along with latitudinal expansions (Breitburg et al., 2018), may also
make the co-occurrence of HABs and hypoxia more common. The Baltic
Sea is a high-latitude ecosystem prone to both hypoxia and cyano-
bacterial HABs during summer (Funkey et al., 2014) and these occur-
rences may be related as hypoxic conditions provide a flux of phos-
phorus that can promote the growth of diazotrophic and toxic HABs
such as Aphanizomenon and Anabaena spp. (O’Neil et al., 2012). How-
ever, the co-effects of hypoxia and toxic cyanobacteria from this region
have not been studied.
A series of studies with microcystin-producing M. aeruginosa cul-

tures and the sail mussel, (Hyriopsis cumingii; Hu et al., 2015, 2016; Wu
et al., 2017), represent some of the only efforts to examine the co-ef-
fects of HABs and hypoxia on aquatic life. Strong interactive effects
between hypoxia (e.g. 1, 3, and 6mg L−1 O2) and M. aeruginosa oc-
curred whereby combined exposure to stressors elicited more severe
negative responses for H. cumingii than the individual stressors. Scope
for growth (i.e. energy available for growth) among mussels within the
combined treatments (e.g. 1 mg O2 L−1 and 100% M. aeruginosa) was
the lowest of all treatments (Hu et al., 2016) and, after seven days of
exposure to<1mg L−1 dissolved oxygen, clearance rates were lowest
within combined treatments and remained low throughout the recovery
period. Combined exposure to hypoxia and M. aeruginosa also inhibited
the activities of superoxide dismutase (SOD) and lysozymes (Yu et al.,
2015). Mussels exposed to hypoxia and M. aeruginosa exhibited damage
to gill, digestive, and stomach tissues with the more severe damage in

the combined treatments compared to mussels exposed to only one
stressor (Wu et al., 2017). Collectively, these studies demonstrate po-
tential forMicrocystis spp. and hypoxia to interact, yielding more severe
outcomes than either stressor individually.

5. Future directions

Climate change will continue to intensify within coastal zones
throughout this century, having transformative impacts on aquatic
ecosystems (Doney et al., 2012; IPCC, 2014). At the same time, the co-
occurrences of climate change stressors, eutrophication, and HABs
(Hallegraeff, 2010; Fu et al., 2012; Glibert et al., 2014; Gobler et al.,
2017) pose significant threats to the structure and function of aquatic
food webs. While the impacts of climate changes on HAB characteristics
(i.e. growth, toxin production, phenology) have been well-studied, the
effects of combined exposure to climate change stressors (e.g. low pH,
hypoxia, and warming) and HABs on aquatic life have not. The tox-
icokinetics (i.e. stability, distribution, and reactivity) of HAB toxins in
climate change-altered environments have been poorly studied, pre-
venting a clear understanding of their fate and impacts under different
climate change scenarios. Limited assessments to date suggest the re-
lationships between HAB growth, toxin production, cellular toxin
quotas, and harmful impacts are often non-linear (Ogata et al., 1987;
Anderson et al., 1990; Etheridge and Roesler, 2005; Griffith and Gobler,
2016). Further, altered aerobic scope in response to climate change
perturbations (Sokolova and Portner, 2001; Pörtner and Knust, 2007;
Donelson et al., 2011; Waldbusser et al., 2015) may influence the me-
tabolism or depuration of HAB toxins in aquatic organisms, a process
that may alter their potency and effects. For example, given that the
depuration of saxitoxin within bivalve shellfish can be slowed by
warming and acidification, this toxin may be retained for longer periods
of time, increasing the risk for human exposure and trophic transfer
(Braga et al., 2018).
For species producing a suite of toxins, climate change stressors may

alter the synthesis of specific congeners, changing their composition,
content, (Rapala et al., 1997; Fu et al., 2008; Tatters et al., 2013;
Hattenrath-Lehmann et al., 2015a, 2015b) and ultimately, toxicity
(Gupta et al., 2003; Miles et al., 2004; Baden et al., 2005; Munday et al.,
2013). Given that changes in toxin congers may not be detected by
structure-based toxin assays, (Rivasseau et al., 1999; Naar et al., 2002;
Litaker et al., 2008), biological assays using ecologically appropriate
organisms will be more representative of harmful impacts elicited by
HABs and other co-stressors. Climate change processes may also alter
the solubility, stability, distribution, and fate of HAB toxins, scenarios
that will ultimately dictate the severity of their harmful impacts. Un-
fortunately, these dynamics are difficult to model or predict given the
scarcity of information on this topic, emphasizing the need for multi-
factorial investigations. In addition to changes in the kinetics and ac-
tivities of HAB-toxins, climate change may alter the vulnerabilities of
marine life exposed to multiple stressors. Trends, as detailed above, are
likely to be species-/strain- and toxin-specific.
An important, but understudied question regarding the co-impacts

of climate change and HABs is how climate-altered migration patterns
may alter the temporal and/or spatial overlap of HABs and organisms
sensitive to their effects. Ocean warming is changing the ranges in
which HABs occur (e.g. Gobler et al., 2017) as well as the distribution of
aquatic life (Walther et al., 2002; Harley et al., 2006; Nye et al., 2009).
These changes may expose naïve populations to HABs, an outcome that
may be particularly severe and lead to rapid natural selection in aquatic
populations (Bricelj et al., 2005). For example, copepods (Acartia hud-
sonica) originating from regions historically void of Alexandrium cate-
nella are more sensitive to exposure than populations originating from
areas with frequent blooms, suggesting that as blooms expand, geo-
graphically-naÏve copepod populations could be vulnerable (Colin and
Dam, 2002). Further, brown tides caused by Aureoumbra lagunensis have
recently emerged within the Indian River Lagoon (FL, USA; Gobler and
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Talmage, 2013) and have been found to negatively impact the phy-
siology and feeding behavior of resident bivalves (Galimany et al.,
2017), confounding bivalve restoration efforts. In addition to changing
marine animal distributions, recent ocean warming has caused bloom-
favorable conditions for several HABs to become established earlier and
persist longer, a phenomenon that may increase the risk and/or dura-
tion of exposure to marine life from certain HABs (Gobler et al., 2017;
Griffith et al., 2019).
Although eutrophication can concurrently promote HABs, acid-

ification, and deoxygenation within coastal systems (Heisler et al.,
2008; Wallace et al., 2014), combined impacts of theses stressors are
poorly understood. Few studies have investigated the combined impacts
of two of these stressors, and those studies have reported strong inter-
active effects (Talmage and Gobler, 2012; Hu et al., 2015, 2016; Wu
et al., 2017). No study has examined all three of these stressors con-
currently. Beyond examining the immediate effects of these co-stres-
sors, it is important to understand how sequential exposure to these
stressors may affect organisms. For example, dense blooms of primarily
autotrophic HABs may prohibit acidification and hypoxia during the
day, but may lead to intense exposure at night or HAB exposure fol-
lowed by low pH/DO conditions. Identifying the combined impacts of
these stressors may be especially important for high-production aqua-
culture facilities/locations contributing large quantities of organic
mater to the water column (Shumway, 1990; Burkholder and
Shumway, 2011) that can promote deteriorating water quality (e.g.
acidification, hypoxia, and HABs). Given that caged organisms are
unable to avoid HABs, aquaculture operations may be particularly
vulnerable to the co-exposure to these stressors. As climate change
advances and HABs become more frequent and intense (Fu et al., 2012;
Paerl and Paul, 2012; Glibert et al., 2014; Gobler et al., 2017), under-
standing the combined impacts of hypoxia, acidification, and HABs on
aquaculture production could help minimize future losses. More spe-
cifically, strains or species of aquacultured organisms that are resistant
to HABs and their co-stressors may be needed to replace those that are
highly vulnerable.

6. Conclusion

As anthropogenic perturbations (e.g. climate change and eu-
trophication) continue along coastal zones, HABs are becoming an
aquatic stressor of increasing concern. Incorporating harmful algae into
experiments and monitoring where multiple climate change stressors
are considered will provide a more ecologically relevant perspective
regarding the structure and function of marine ecosystems in future,
climate-altered environments. While few studies have examined the
combined impacts of HABs and other climate change stressors on
aquatic organisms, strong species- and strain-specific interactions that
modify the outcomes for exposed organisms have been described.
Furthermore, responses of HAB growth, toxin production, and their
effects in altered environments have been highly dynamic and non-
linear. A deeper and more nuanced understanding of how HABs and
climate change stressors interact to affect aquatic life in marine and
freshwater ecosystems is needed to formulate management plans that
protect human health, fisheries, and aquaculture.
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